

1,3

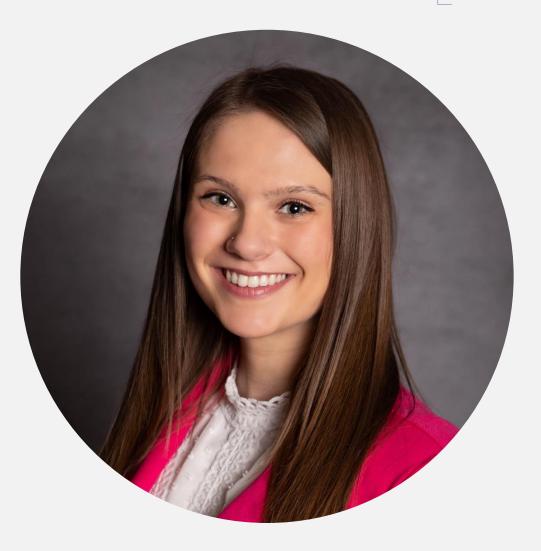
Low-Cost, High-Value Chiller Plant Upgrades

Michelle Hull, Applications Engineer Brian Meyers, Portfolio Leader – Controls Stephen Scott, Sustainable Systems Leader - Canada

May 2025

WAVES of INNOVATION TOGETHER WE RISE

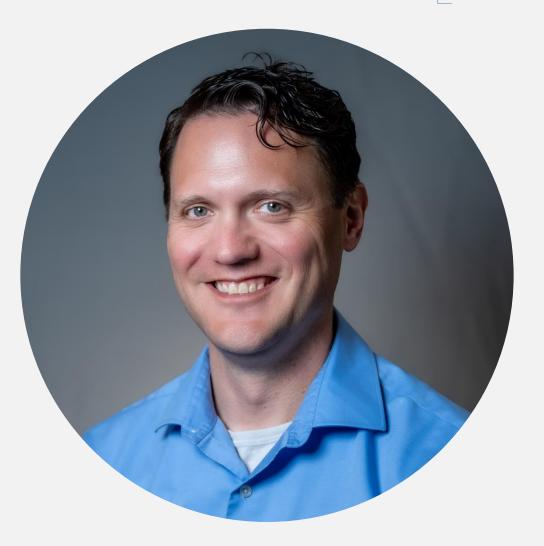
Special Thanks to our Sponsors:


Michelle Hull

Applications Engineer

*PARTNEF

- Michelle provides support for the field sales organization, specializing in hydronic systems and energy modeling. Her role also includes creating educational and technical resources, such as Engineers Newsletters, Engineers Newsletter Live, Application Guides, and Air Conditioning Clinics.
- Michelle joined Trane in 2019 as a Test Engineer in the La Crosse Research and Development Lab. She later transitioned to the Customer Direct Services (CDS) team as a Building Performance & Systems Engineer, where she led a cross-functional development team focused on TRACE 3D Plus and provided global support and training for CDS program users.
- Michelle holds a vocational degree in HVAC/R Service & Installation and a Bachelor of Science in Mechanical Engineering from Worcester Polytechnic Institute.



Stephen Scott, P.Eng.

Sustainable Systems Leader - Canada

- Stephen mentors and coaches the Canadian field sales organization to drive the growth of sustainable systems offerings including electrification of heating, thermal energy storage, and next-generation refrigerants. His role also involves supporting marketing efforts, driving key metrics, and sharing best practices across the organization.
- He graduated in 1997 from Queen's University with a Bachelor of Science degree in engineering chemistry from and completed Trane's 98-1 Graduate Training Program. Outside of his professional life, Stephen enjoys spending time with his family, running, playing pickleball, enjoying music, reading, and photography.

Brian Meyers

Portfolio Leader - Controls

- Brian is a seasoned leader in the building automation and management space. Currently serving as the Portfolio Leader for system controls at Trane, Brian provides strategic direction across Trane's Tracer building automation systems portfolio.
- Brian has two decades of experience at Trane, where he has held various positions within the product management organization, including as a system applications engineer and product manager. Brian's work has led to multiple patents for Trane, reflecting his contributions to the building management field.
- Before joining Trane, Brian earned a Bachelor's Degree in Electrical and Computer Engineering and spent ~five years as an applications engineer in the IT field. His expertise in both IT and building management gives him unique insight into the application of modern, connected, building automation systems.

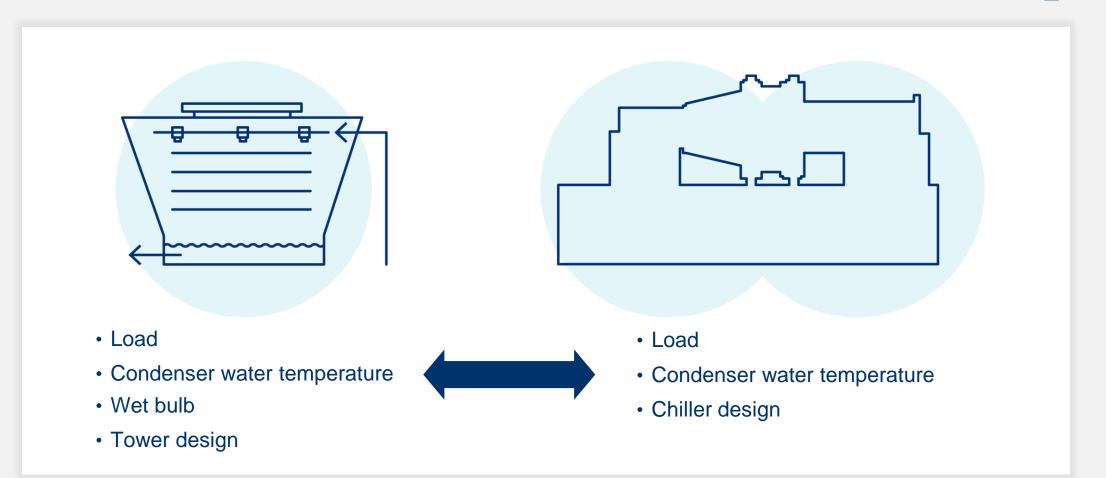
Utilize existing equipment & infrastructure

- Cooling Tower Optimization & Control
- Pump Pressure Reset
- Chiller Add/Subtract
- Upgrading existing equipment
 - Adding a Variable Speed Drive to a Chiller
- Upgrading existing infrastructure
 - Converting Constant Flow Plants to Variable Primary Flow
- Replacing existing equipment
 - Condenser Flow Optimization

Join at Menti.com | use code 63419566

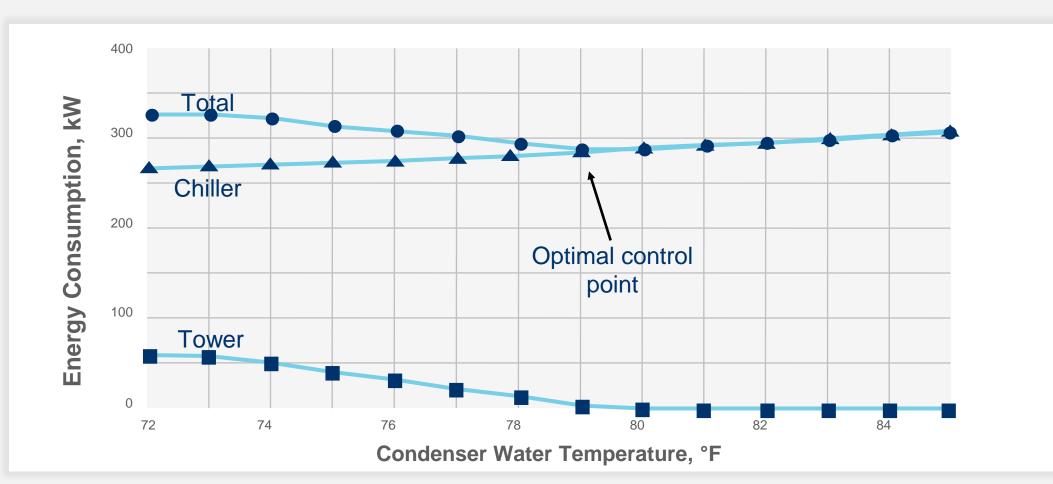
Topic 1 - Where do you see the biggest efficiency opportunities without modifying/replacing existing Chiller Plant equipment?

0 responses


Join at menti.com | use code 63419566

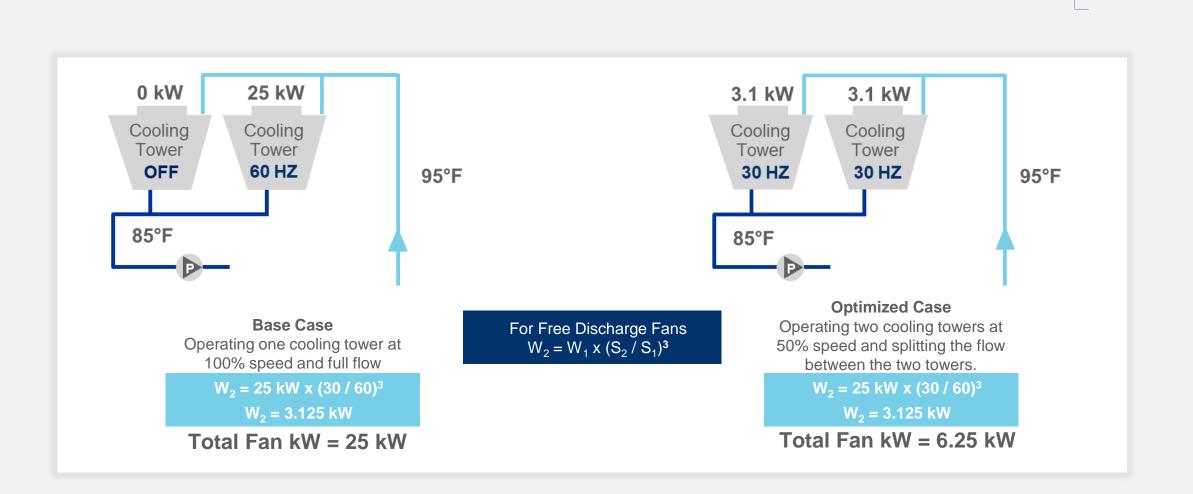
Tower Optimization

Tower Setpoint Optimization



Chiller and Tower Optimization

Chiller and Tower Interaction



Tower

Optimization

Cooling Tower Design and Control

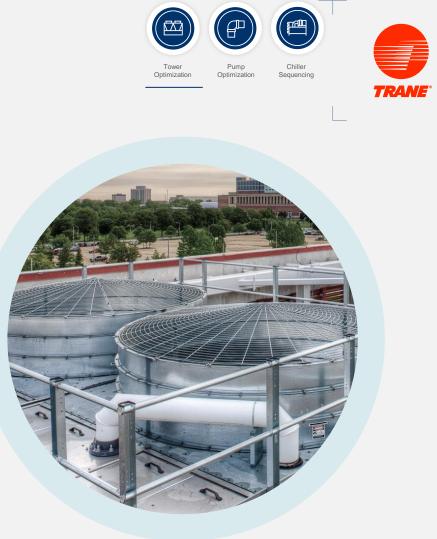
Leveraging Fan Laws & Heat Exchanger Surface

Chiller

Sequencing

TRAN/=

Optimization


Tower Optimization

Enhanced Cooling Tower Staging

Tower Staging Optimization

Significant cooling tower fan energy savings opportunity

- Operate maximum tower cells while maintaining tower minimum flow
- Operate maximum tower fans as slowly as possible to meet setpoint
- Fans operate at same speed

Cooling Tower Design and Control

Flow Limits

Tower Flow Limits

Flow	500-ton chiller	500-ton cooling tower
Design	1000 gpm	1000 gpm
Maximum	2469 gpm	1290 gpm
Minimum 449 gpm 780 gpm		780 gpm
Tower flow range can be much narrower than that of chiller		

Flow violation	Result
Too low	"Holes" in fill coverage
	Lost efficiency
	Mineral deposits
Too high	"Over-flow" distribution
	Lost efficiency
	Lost water
	Lost treatment chemicals
Consult tower Ma	anufacturer Specify limits

Cooling Tower Minimum Flow

Mitigate flow issues with Nozzle Cup Installation

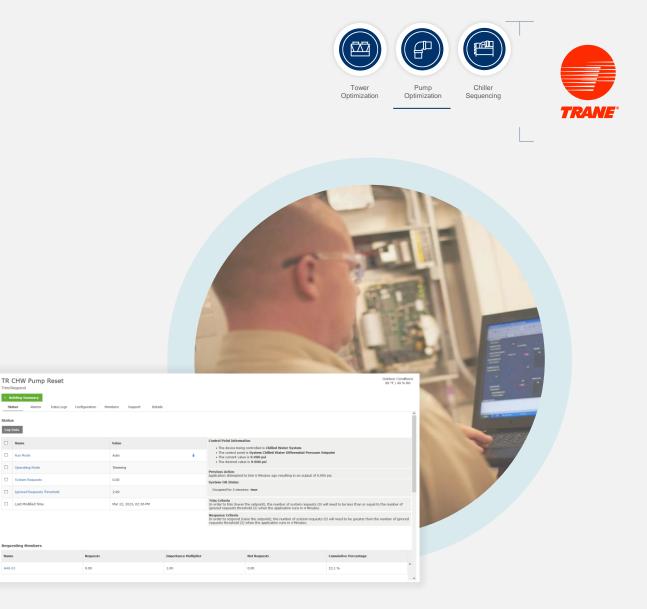
Nozzle cups can be utilized to mitigate the impact of lower flow to the tower

Distribution Pumping

Critical Valve Pressure Control

• Traditionally controlled based on differential pressure setpoint set by a balancer at full load

Common drawbacks

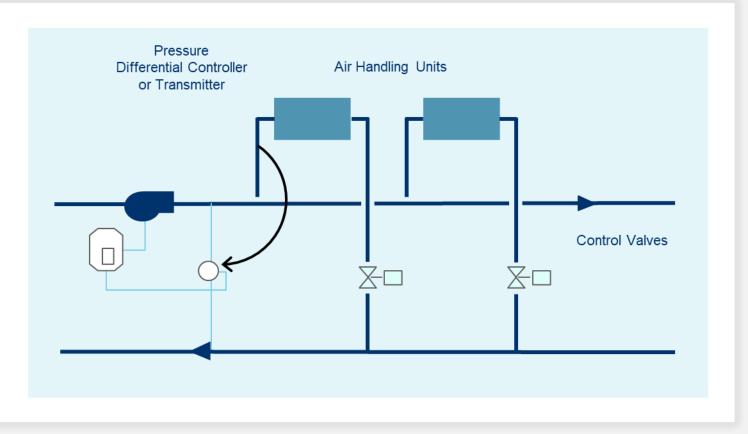

- Highest system pressure closest to pumps
- Highest system pressure at part load
- Two-way valve control stability
- Large chiller plant syndrome (leaky valves)

Pump Pressure Reset

Critical Valve Pressure Control

- Requires fully integrated systems
- Execution:
 - Monitor critical AHU valve position
 - Reset distribution differential pressure setpoint
 - Trim/Respond methodology with customizable rules based on ASHRAE Guideline 36

Pump Pressure Reset


Critical Valve Pressure Control

Tower Optimization Tower Optimization Tower Optimization

Critical valve reset

• Benefits:

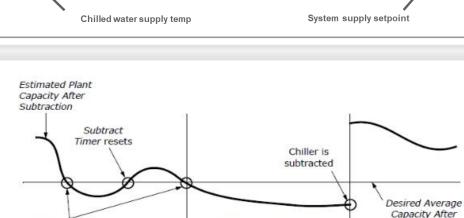
- Reduced pump energy
- Better coil control
- Extend pump life

Add/Subtract Chillers

• Add logic – When to add chillers

- Temperature based
- Efficiency based
- Subtract logic When to subtract chillers
 - Temperature based
 - Efficiency based
 - Flow based
 - Capacity based

ler Plant				
Applications Edit Chiller Plant				
Graphic Status Alarms D	ata Logs Functions and Ca	Iculations Configuration		
Configuration Add/Subtract Methods				
Add Chiller Logic				
Enter values that will determine when chiller	s are added.			
Add Delay Time	15 Minutes			
Reference Point for Adding	Chiller Plant Add Input 🔏			
✓ Use Temperature Deadband for Adding	2.50 °F			
▼ Enable Efficiency-based Add logic		Soft Start		
Feed Forward Add Signal Time	5 Minutes	✓ Enable Soft Start		
Limit Low Load Cycling		Start Interval	20	Minutes
		Soft Start Deadband	20.00	٥F
Culture & Chiller Landa		Minimum Cool Down Rate	0.25	°F/min
Subtract Chiller Logic				
Enter values that will determine when chiller	s are subtracted.			
	and Minutes			
Subtract Delay Time	20 Minutes			
Reference Point for Subtracting	Chiller Plant Subtract Input 🦓			
Enable Efficiency-based Subtract logic				
Feed Forward Subtract Signal Time	5 Minutes			


Add/Subtract Example (Temperature)

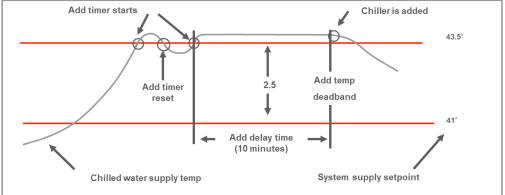
Add

- Based on supply temperature and setpoint
- Operator editable delay time and deadband

Subtract

- Based on chiller capacities
- Operator editable delay time and deadband

Subtract Delay Time

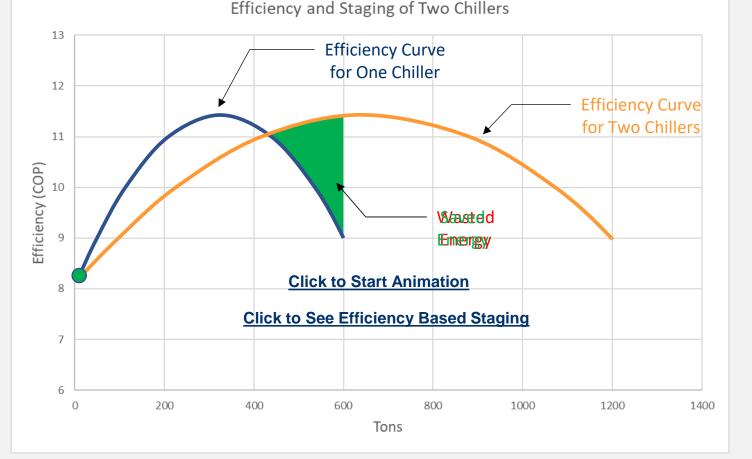

(20 minutes)

Subtract

Timer starts

Subtraction

Efficiency Based Add/Subtract



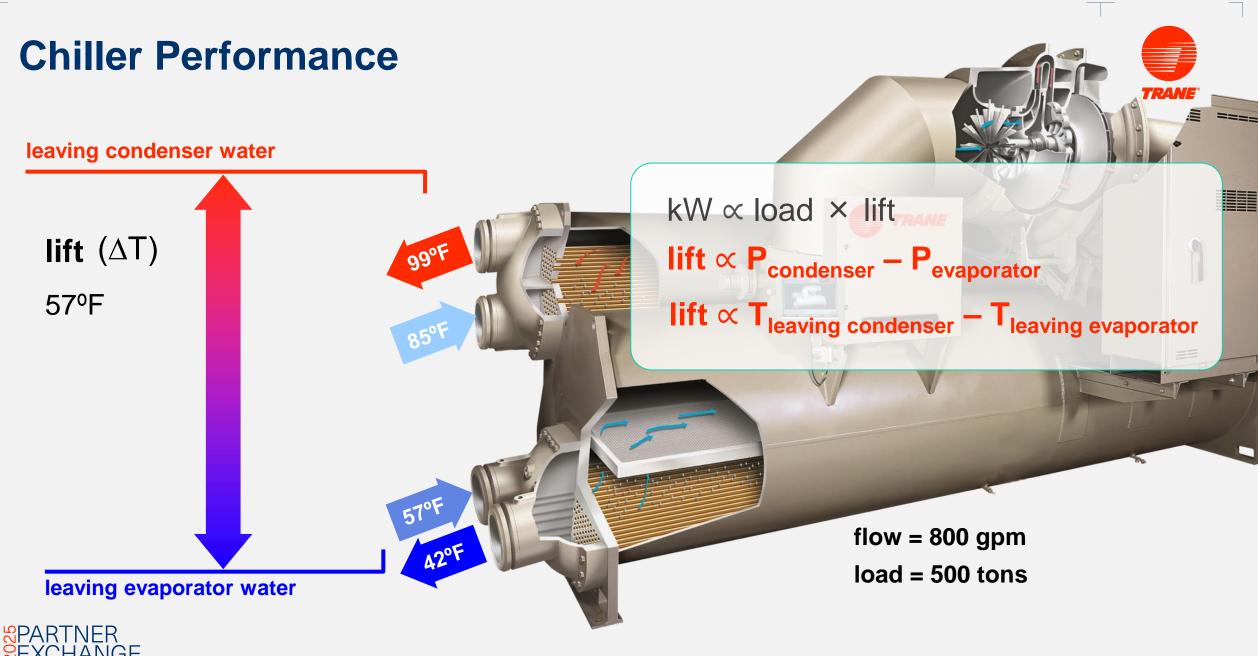
Traditional Staging as Load Increases

- Chiller efficiency will follow the curve as the load increases
- At the intersection, with traditional staging, only one chiller will continue to operate until chiller is fully loaded
- This will result in wasted energy that could have been saved by operating two chillers

Efficiency Staging as Load Increases

- Chiller efficiency will follow the curve as the load increases
- At the intersection, with efficiency staging, the second chiller will be added to increase efficiency
- This will result in saved energy
- The same principle will apply when subtracting chillers

Join at menti.com | use code 63419566

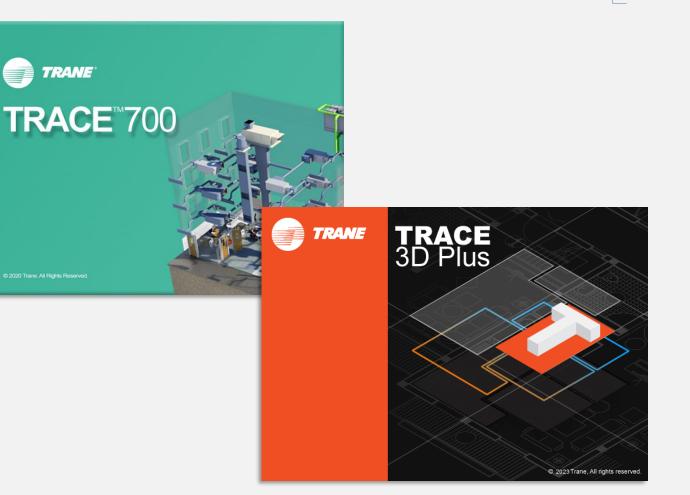

Mentimeter

Topic 2 - Adding a variable speed drive to a chiller will **always** result in improved chiller efficiency.

Lift Reduction During Operation

- To reduce lift:
 - Decrease condenser pressure by reducing leaving-tower water temperature
 - Increase evaporator pressure by raising chilled water setpoint
- VSDs enhance chiller <u>lift</u> efficiency

Drive Impact on Existing Chiller Performance 700-Ton Chiller VSD Retrofit Existing-85°F No savings at constant ECWT -X-VSD-Retrofit-85°F Existing-75°F kΝ VSD-Retrofit-75°F ---Existing-65°F Savings at reduced ECWT ----VSD-Retrofit-65°F


Tons

*AHRI 550/590-2015, Section D2

SPARTNER

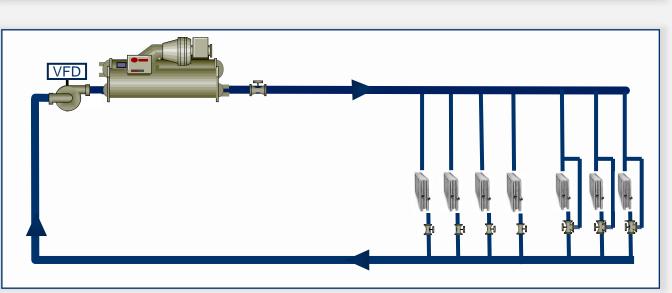
Will it Pay Back?

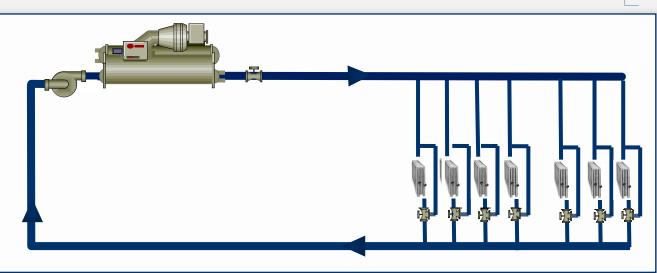
- Simultaneous
 - Weather data*
 - Building load characteristics*
- Operational hours*
- Economizer capabilities*
- Energy drawn from auxiliaries*
- Actual utility rates
 - consumption & demand

Join at menti.com | use code 63419566

Mentimeter

Topic 3 - You do not **always** need to install a bypass pipe when converting a constant flow system to variable primary flow.

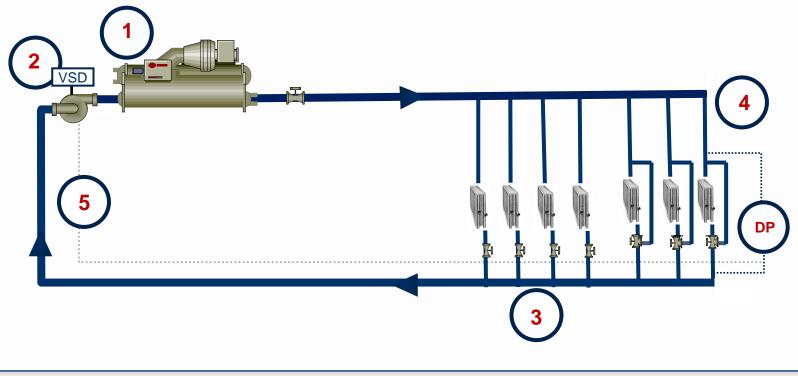




Convert Constant Flow to Variable Primary Flow

Benefits

- Often accomplished without interrupting chilled water production
- Ability to be done in phases
- Reduces flow through chiller at part load and compensates for varying ΔT
- Simple in single chiller systems
- Cold water is always flowing

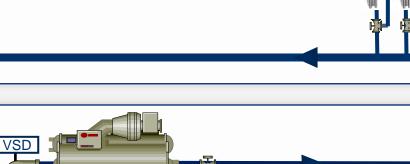


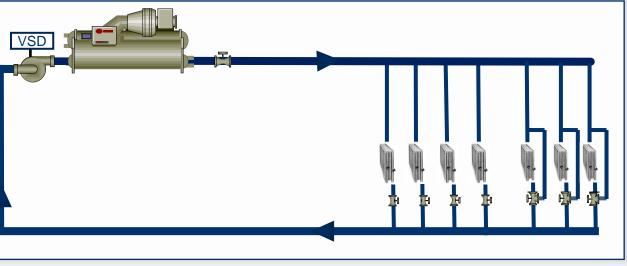
Convert Constant Flow to Variable Primary Flow

- Check unit controller for VPF compatibility
- 2. Add VSD to pump
- Change some 3-way valves to 2-way
- 4. Leave enough 3-way valves to allow minimum flow
- 5. Control pump VSD to maintain minimum flow

Convert Constant Flow to Variable Primary Flow

Benefits

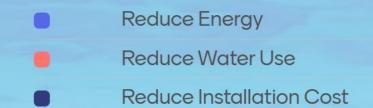

- Often accomplished without interrupting chilled water production
- Ability to be done in phases
- Reduces flow through chillers at part load and compensates for varying ΔT
- Simple in small systems
- Cold water is always flowing


Considerations

- Chiller minimum and maximum flow rates
- Determine how many 2-way valves to convert to 3-way valves
- Pump energy
- System ∆T

SPARTNEF

Flow rate of change capabilities



Join at menti.com | use code 63419566

Topic 4 - When replacing a chiller and cooling tower, do you optimize the condenser water flow to reduce energy, water use, and/or installation cost?

33

Replacing chiller and tower? Lower the cost and energy!

Adapted from Engineer's Newsletter Live, "State-of-the-Art Chilled Water Plant Design", March 2021.

Scenario:

- 20+ year old 400 Ton existing chiller, tower, condenser pumps at end of life and need to be replaced.
- Not altering the existing chilled water system, original design 42°F/58°F.
- Keeping existing condenser piping.
- Original condenser flow sized for 3 gpm/ton.
- Budget includes for variable speed compressor technology.
- No budget for upgrading controls for chiller-tower optimization.

• Ask: How do we lower the installed cost as much as possible, and save some energy costs?

State-of-the-Art Chilled Water Systems Quickly enter information

TM

Building specific inputs

- Location
- Building Type
- Plant

Tonnage

	myPLV [™]			
	Condenser Water			
	System Optimization	Unit of Measure	IP	-
٢		Region	North America	▼
		Country	United States	▼
		State / Territory	Minnesota (MN)	▼
		City / Location	Minneapolis (6A)	▼
	Building Typ	e and Airside Economizer	Hospital w/o Econ	▼
		Chiller Condenser Type	Water Cooled Chiller	▼
		Building Peak Load	400 tons	
	N	lumber of Chillers in Plant	1	
		400 tons		
		Variable Speed		
	Plant C	apacity (Calculated Point)	400 tons	
	A SHRAE 90.1 Appx. G Oversize	e Factor (Calculated Point)	0%	
			Assumes equal size chillers in parallel	

Assumes equal size chillers in parallel

https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/trane-design-tools/myplv-design-tool.html

State-of-the-Art Chilled Water Systems Condenser Flow Optimization - Inputs

- **Design Parameter Inputs**
- Wet bulb
- Delta pressure drop
- Cooling tower Control
- Equipment Costs
- Electricity rates

Enter Tower Selection Conditions at 3 gpm/ton	
	Run Flow Optimizer
Fower Selection Conditions at 3 gpm/ton	
Design Wet-Bulb from Weather Zone Data, 0.4% humid (°F)	74.4
Maximum Wet-Bulb from Weather Zone Data (°F)	77.6
Design Wet-Bulb (°F)	79.0
Tower Design Approach (°F)	6.0
Chiller Design Entering Condenser ¥ater Temperature (°F) [85.0
Condenser Pump Design Pressure Rise (ft. H2O)	80.0
Tower Control Method	
Tower Control Method	Fixed Tower Approach
Approach Setpoint (`F)	6.0
Minimum Entering Condenser Water Temperature (`F)	55.0

Chiller and Tower Assumptions at 3 gpm/ton

Chiller Design Efficiency at Std AHRI Conditions (kW/ton)	0.6102	
Chilled Water Setpoint (°F)	42.0	
Tower Performance CTI Std-201 Certified (gpm/hp)	40.0	

Cost Assumptions at 3 gpm/ton

Book Hoodinp tone at e gpinton		
Electric	8.00	
Length of Cooling Season (months)		8
Electric Consu	ımption Charge (\$/k₩h)	0.065
Equivalent Pipe Length, Supply and Return (ft)		80
	Default Values	User Override (leave blank to use default)
Cooling Tower Cost (\$/ton)	\$ 100	
Condenser Pump Cost (\$/each)	\$ 9,288	
Piping Cost (\$/ft)	\$ 160	

State-of-the-Art Chilled Water Systems **Condenser Flow Optimization – Summary Results**

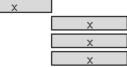
Energy Optimized - pipes, towers, and chiller sized for 3 gpm/ton; pumps and same cost chillers reselected for flow

Design Choices Energy optimized

- Lowest first cost
- Balanced approach

	Optimized vs 3 GPM/Ton	Select Scenario for myPLV bid forms		Compone	nt Sizing
Optimized Flow (gpm/ton)	1.50	- myrev bla lams		3 gpm/ton	Resized
Annualized System Total (k¥/ton)	0.5313	See Summary Report	Pipes	X	
Plant Demand Peak (k₩)	292.9		Tover	X	
First Cost Savings (\$)	\$2,748	See Detailed Results &	Pump	[x
Annual Energy Savings (%)	23.5%	Select Specific Flow	Chiller	[X
Annual Electrical Cost Savings (\$)	\$13,711				

ect Scenario for


PLV bid forms

Balanced - 3 gpm/ton sized pipes; reselected towers, pump and chillers (same cost chillers)

	Optimized vs 3 GPM/Ton	05
Optimized Flow (gpm/ton)	1.50	,
Annualized System Total (kW/ton)	0.5678	
Plant Demand Peak (k₩)	303.4	
First Cost Savings (\$)	\$7,191	
Annual Energy Savings (%)	18.2%	
Annual Electrical Cost Savings (\$)	\$10,648	

	Component Sizing		
	3 gpm/ton	Resize	
Pipes [х		
Tower		X	
Pump		X	

Chiller

Resized

Resized

First Cost Optimized - all components reselected (same cost chiller)

	Optimized vs 3 GPM/Ton	Select Scenario for myPLV bid forms
Optimized Flow (gpm/ton)	1.50	
Annualized System Total (k¥/ton)	0.5801	
Plant Demand Peak (k¥)	304.9	
First Cost Savings (\$)	\$10,391	
Annual Energy Savings (%)	16.5%	
Annual Electrical Cost Savings (\$)	\$9,747	
	Annualized System Total (k₩/ton) Plant Demand Peak (k₩) First Cost Savings (\$) Annual Energy Savings (%)	Optimized Flow (gpm/ton)1.50Annualized System Total (kW/ton)0.5801Plant Demand Peak (kW)304.9First Cost Savings (\$)\$10,391Annual Energy Savings (%)16.5%

Component Sizing

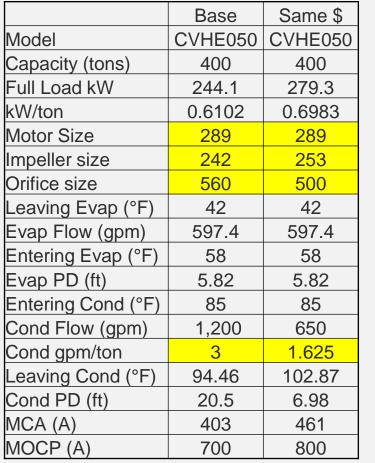
	3 gpm/ton
Pipes	
Tower	
Pump	
Chiller	

State-of-the-Art Chilled Water Systems Condenser Flow Optimization - Balanced

Balanced - 3 gpm/ton sized pipes; reselected towers, pump and chillers (same cost chillers)					
	Optimized vs 3 GPM/Ton	Select Scenario for Component Sizing			
Optimized Flow (gpm/ton)	1.50	3 gpm/ton Resized			
Annualized System Total (kW/ton)	0.5678	Pipes x			
Plant Demand Peak (kW)	303.4	Tower x			
First Cost Savings (‡)	\$7,191	Pump x			
Annual Energy Savings (%)	18.2%	Chiller x			
Annual Electrical Cost Savings (\$)	\$10,648				

Equipment sizing at the various condenser flowrates

- Tower is downsized
- Pipes are the same size as 3 gpm/ton
- Pump(s) are downsized
- Chiller is the same cost (need to verify with actual chiller selected)


State-of-the-Art Chilled Water Systems Condenser Flow Optimization - Balanced

Chillers have physical limits to keep the same chiller cost when reducing condenser flow

- Motor size
- Starter/frequency drive size
- Minimum condenser flow for tubes
- Compressor has limits

Notes:

• Evaporator: 2-pass non-marine, 050S/580/IMC1, 0.025", 0.0001 fouling.

Condenser: 2-pass non-marine, 050S/500/TECU, 0.028", 0.00025 fouling.

• Unit mounted, refrigerant cooled AFD with harmonic filter, 460/60/3.

State-of-the-Art Chilled Water Systems Condenser Flow Optimization – Summary Report

Simple and easy evaluation in as little as 5 minutes

State-of-the-Art Chilled Water Systems **Condenser Flow Optimization - Balanced**

Smaller cooling towers have some added opportunities:

- Reduced make-up water use (\$ and for water stressed areas) ٠
- Potentially invest savings into other measures discussed previously ٠
- Lower weight (lower embodied carbon) •

	3 gpm/ton	1.625 gpm/ton	
Entering Tower (°F)	94.46	102.87	
Leaving Tower (°F)	85	85	
Flow (gpm)	1200	650	
Ambient Wet Bulb (°F)	79	79	
Evaporation at 50% RH (gpm)	12.2	11.4	-6.6%
Fan Motor Size (hp)	40	15	-62.5%
Shipping Weight (lb)	7411	7057	-4.8%

Thank you!

If you would like to receive PDH credit for this session, please be sure to provide your feedback in the applicable session survey. (Also available via the event App!)

*Surveys close June 4th, 2025

Breakout Workshops

SPARTNER SEXCHANGE 35th Anniversary

WAVES of INNOVATION TOGETHER WE RISE

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited. All trademarks referenced in this document are the trademarks of their respective owners. | © 2025 Trane. All Rights Reserved.

