

RESIENTENT OCELETER 2022 Partner Exchange

Electrification of Heat is More Than Just a Fuel Change

September 19, 2022

- Introductions and recognizing workshop advisors
- Heating sources
- Heating loads and coil selection implications
- Carbon emissions and example analysis
- Introduce newer applied heating products
- Overview two chiller heater system concepts
- Summary and final questions

Welcome questions and interaction during the workshop

Thank You to our Partner Advisory Team Members

• Bill Champion – Partner

• Mike Warmbold – Trane

Burner

Hydronic Heating for HVAC: Closed Water System Source and Load Requirements for Hot Water Supply and Return <u>Traditional Boiler</u>

What is the source of heat making the hot water?

Combustion—Make Heat

Natural Gas ≈ 1030 btu/ft^3

Source Heat is combustion exhaust air (flu gas) \approx 300-500F

Vent

Hydronic Heating for HVAC: Closed Water System Source and Load Requirements for Hot Water Supply and Return <u>Condensing Boiler</u>

What is the source of heat making the hot water?

Combustion—Make Heat

Natural Gas ≈ 1030 btu/ft^3

Source Heat is combustion exhaust air (flu gas) \approx 300-500F + <u>condensation</u>

<120F Inlet Water to Boiler to get benefit of condensation

ASHRAE[®] 90.1-2019 Section 6.5.4.8.2

a. Coils and other heat exchangers shall be selected so a that at design conditions the hot water return temperature entering boils is 120F or less

Hydronic Heating for HVAC: Closed Water System Source Requirements for Hot Water Supply and Return <u>Heat Pumps</u>

What is the source of heat making the hot water?

Heat Pumps- MOVE Heat

Source Heat

Air Source: Extract Heat from Outdoor Air

Hydronic Heating for HVAC: Closed Water System Source Requirements for Hot Water Supply and Return <u>Air Source Heat Pumps</u>

Heat source is outdoor air

Move heat from the outdoor air to the hot water loop for building.

Moving heat is more efficient than making heat COP>>1.0

Example: 47F ambient conditions This example, make 120F HW COP=2.81... 281% efficient

Hydronic Heating for HVAC: Closed Water System Source Requirements for Hot Water Supply and Return <u>Air Source Heat Pumps</u>

Heat source is outdoor air

Example: 5F ambient conditions

Colder Air

The maximum available temperature hot water is reduced

Available Heating Capacity is reduced

This example, make 105F HW COP=1.8... 180% efficient

Hydronic Heating for HVAC: Closed Water System Source Requirements for Hot Water Supply and Return <u>Air Source Heat Pumps</u>

Air Source Heat pump have operating map where the maximum HWS temperature is dependent on the outdoor ambient temperature.

140F

Example Operating Map Ascend Heat Pump

<130F HWS

Typical ASHP

HWS 100-140F

What is the source of heat making the hot water? Source Heat

Water Source: Extract Heat from Water Loop

A Building (Chilled Water Loop) The Earth (Ground Loop) Thermal Storage(Ice Tanks)

This example, make 120F HW

COP=3.2... 320% efficient

Example: Extract Heat From Thermal

Storage Tank

Heat source is water loop

12

≈100°F Lift

Hydronic Heating for HVAC: Closed Water System Load Requirements for Hot Water Supply and Return <u>supply air temperature limits</u>

<u>Draw Thru fans</u> -UL limit of 104F air for motor -More critical today for units with ECM fans

Ceiling Return and Supply

ASHRAE[®] 62.1 ventilation requirements

Supply air needs to be <15F from space set point or 20% more outdoor air needed!

Design Set points typically 68-70F Max Supply to avoid penalty 83-85F

ASHRAE 90.1 zone reheat maximum

Supply air < 20F from space setpoint Max Supply 88-90F

Hydronic Heating for HVAC: Closed Water System Load Requirements for Hot Water Supply and Return <u>supply air temperature limits</u>

Comfort ASHRAE ® STD 55

Sitting occupants need less than 5.4F between head and ankle air temperature

Standing occupants need less than 7.2F between head and ankle air temperature

Operative temperature of space can not rise quicker than 2F in 15minutes

These are difficult to accomplish with very hot air

Unit coil face area sized for cooling -1Row Heating coil HWS =180F -2Row Heating coil HWS =110 to 140F -4Row Heat/Cool coil HWS =100 to 110F

Hot-water supply temperature	180°F	140°F	110°F	105°F
Coil rows	1 (HW)	2 (HW)	2 (HW)	4
Entering fluid temperature, °F	180	140	110	105
Leaving fluid temperature, °F	103	93	103	82

Reusing Existing Coils 180F HWS coils are a mismatch to required supply air temp

- Reduced Size Heat exchanger are used
 - Coils often are not full face
 - Minimum Fin Spacing possible
- More water flow at lower temperatures will not get design capacity

140F HWS coils may work at design with 120-130F HWS but would require more flow.

How Much Capacity Can Get trying to reuse equipment sized for traditional boiler?

- Hundreds of equipment types
- Each with multiple coils and fin options
- Need water flow and close current match of equipment to select for estimate

This is an example....no "typical" !!! Here 120F get 50% capacity in coil sized for 180F

MIXED AIR SINGLE ZONE AHU

- 50F mixed air heated to 90F LAT
 - 2 Row Heating Coil HWS= 140F to 180F
 - 4 Row Heating Coil HWS= 100F to 110F
 - 0 Row Heating Coil HWS= 100F to 105F

Hot-water supply temperature	180°F	140°F	105°F
Coil rows	2 (HW) 6 (CHW)	2 (HW) 6 (CHW)	4 (HW) 6(CHW)
Coil heating capacity, Btu/h	86,800	86,800	86,800
Entering fluid temperature, °F	180	140	105
Leaving fluid temperature, °F	150	120	85
Fluid flow rate, gpm	5.78	8.7	8.7
Fluid pressure drop, ft. H ₂ O	0.05	0.29	1.0
Airside pressure drop in. H ₂ O	0.13 (HW) 0.53 (CHW)	0.17 (HW) 0.53 (CHW)	0.39 (HW) 0.53 (CHW)

4 pipe distribution system

NOT CHANGEOVER SYSTEM Same as air cooled chiller + boiler Simultaneous heat and cool system Changeover Coil

Same Coil used for heating and cooling

heating fluid not too hot to use in cooling coil

same machines used to heat and cool

same fluid used to heat and cool

CHILLED WATER SUPPL CHILLED WATER RETURN Supply Return Diverting Diverting Valve Valve Air Source Heat Pump Air Cooled Chiller + Boiler

DOAS UNIT

DOAS Coils HWS= 70F to 85F

Example: <u>BLOWER COIL</u> 100% OA @10F

Heated to 99F

105F HWS ∆T=29F

Unit Overview							
Model Number	Design Airflow	Elevation	External Dimensions		Weight		
	Design Almow	Elevation	Length Width Height	Height	Shipping	Operating	
BCHE036	1200 cfm	0.00 ft	56.700 in	42.000 in	17.000 in	181.0 lb	298.0 lb

Coil Information			
Coil #1 8R Auto Changeover	Cooling face velocity	450 ft/min	
	Heating face velocity	450 ft/min	
	Cooling fluid type	Water	
	Motor heat calculation	Ignore	

Coil Performance - Cooling				
Total cooling capacity	100.25 MBh	Cooling ent fluid temp	42.00 F	
Sensible capacity	54.30 MBh	Cooling leaving fluid temp	66.99 F	
Cooling EDB	95.00 F	Cooling delta T	24.99 F	
Cooling EWB	78.00 F	Cooling flow rate	8.00 gpm	
Cooling LDB	54.36 F	Cooling fluid PD	7.31 ft H2O	
Cooling LWB	54.26 F	Piping package PD	17.53 ft H2O	
		Fluid velocity	2.00 ft/s	
		APD	1.042 in H2O	

Coil Performance - Changeover Heating				
Total heating capacity	116.10 MBh	Heating delta T	29.09 F	
Heating EAT	10.00 F	Main heating flow rate	8.00 gpm	
Heating LAT	99.21 F	Heating fluid velocity	2.00 ft/sec	
Heating ent fluid temp	105.00 F	Main heating fluid PD	6.73 ft H2O	
Heating leaving fluid temp	75.91 F			

MULTIPLE ZONE VAV SYSTEM

CENTRAL VAV AIR HANDLER

1 Row Coil =100F to 180F HWS

VAV SERIES BOX

1 Row HWS= 180F 2 Row HWS= 140F 3 Row HWS= 105-110F 4 Row HWS= 100-105F

Boilers and Heat Pump have different hot water supply temperature limitations

- Traditional Boilers Have lower limits >>140F HWS
- Condenser Boilers Have upper limits < 130F HWS
- Air Source Heat Pumps
 - Limits change with outdoor air conditions and models
 - Source available capacity is not limited
 - Today's typical range HWS 100-130F
- Water Source Heat Pumps
 - Limits does not change with outdoor air conditions, from source water temp
 - Source available capacity has a limit
 - Today's typical range HWS 120-140F

Change over coils in the airside equipment benefits heat pump systems

HVAC Heating Systems can condition buildings with 100 to 110F Hot water

Most new systems will have heat pump and airside equipment selected in that range

Reusing airside equipment and heating coils sized using boiler hot water supply is not a swap out

- Existing airside equipment will drive required HWS temperature
 - 180F HWS size coils have limited heat exchanger capacity and will only provided limited capacity at lower HWS
 - 140F HWS size coils may work at design with 120-130F HWS but more flow will be required.

Carbon Equivalent Emissions

Where Are Emissions Generated From?

Operational Emissions

Source: Greenhouse Gas Protocol

Operational Carbon Emissions

Sort by Amount

Ib/MWH

1,602

1,526

,481

1,204

- Fuel •
 - Natural Gas: 399 lbs/MWH
 - 90% efficient gas boiler, 443 lbs/MWH
 - Electricity (national average): 818 lbs/MWH
 - Resistance (2020 eGrid), 234 1653 lbs/MWH
- Efficiency
 - Heat pumps
 - Heating COP range 1.5 4.0
 - Cooling efficiency is slightly reduced
- Refrigerant •
 - R-410a: 2088 GWP
 - R-32: 675 GWP
 - R-454B: 466 GWP

2020 eGRID CO₂e Breakeven Heating COP

CO₂ total output emission rate (lb/MWh) by eGRID subregion, 2020

Breakeven Heating COP:

The minimum electrified heat source COP required to equal a 90% efficient gas boiler CO_2 e emissions.

What Hot Water Supply Temperature to reduce Heating CO2 emissions? Full Load Minimum COPs

Hotter the water and/or "dirtier" the grid the more difficult it will be to reduce carbon footprint.

* Heat pump powered by 884lbCO2e/MWH grid vs 90% eff Natural Gas hot water heater

TRANE

Sizing Air to Water Heat Pumps

Ventilation Matters More Than Climate

//RESILIENT TOGETHER//

Sizing Air to Water Heat Pumps

- Hours near peak heating are few
 - fewer even than near peak cooling!
- Higher the ventilation, the higher heating needs vs cooling and vice versa
- Unoccupied heating occurs many hours at lower capacity
- Hours of simultaneous heating and cooling are few and often during economizing times

ASHRAE[®] Climate Zones

All of Alaska in Zone 7 except for the following Boroughs in Zone 8: Bethel, Dellingham, Fairbanks, N. Star, Nome North Slope, Northwest Arctic, Southeast Fairbanks, Wade Hampton, and Yukon-Koyukuk

Zone 1 includes: Hawaii, Guam, Puerto Rico, and the Virgin Islands

Sizing Heat Pumps for Peak Building Heating Load

Trane[®] Study of ASHRAE[®] 90.1-2019 Basis Building Models

Oversizing Heating Can Be Costly

- Heating capacity is often oversized
 - Design practice not as focused or robust as cooling
 - All assumptions that go into heating design are ultra conservative
 - Don't account for internal heat generation
 - Not incorporate airside heat recovery in heating design
 - Optimizing cooling design resulting in oversized heating airflow (standardized heating SAT)
- Oversized equipment costs more, cycles more at low loads, and requires more refrigerant.

Heat Pump Capacity at 1F Ambient

Carbon Footprint – TRACE® 3D Plus study

- 3 story office, ~50,000 ft² gross
- 100 rooms
- 68 thermal zones
- 12 ft Floor to Floor, 9 ft ceiling
 - 21.3 % glass
- ASHRAE[®] 90.1-2013 minimum construction based on weather zone
- Scope 1 and 2 carbon footprint study
 - Heat Recovery VRF + DOAS w/gas heat
 - Parallel FP VAV with HW heat (AC chiller/boiler)
 - Parallel FP VAV with HW heat (AWHP)
 - All have total energy wheels
 - VAV systems with and w/o economizer
 - VRF: 55 tons and 20 tons DOAS
 - VAV: 70 tons AC chiller or AWHP

Annual HVAC Energy for Various Systems 50,000 ft² Office

Annual CO₂e 50,000 ft2 office from HVAC Energy - Gas and Electric

SAN FRANCISCO

60

55

50

45

HVAC Annual Operating CO2e ⁰⁷
⁵²
⁰⁷
⁰⁷

15

10

5

Λ

S1=

S2=

S3=

S4=

S5=

S6=

TRANE

Annual CO₂e 50,000 ft2 office from HVAC Energy - Gas and Electric

Annual CO₂e 50,000 ft2 office from HVAC Energy + Refrigerant Losses (Scope 1 or 2)

Applied Products

Update on hydronic heating portfolio

ASCEND® air-to-water heat pump model ACX

Capacity Range: 140 to 230 tons cooling, 1500 to 2500 MBh heating Refrigerant: R-410A

Compressor design: scroll

Controls: Symbio[®] 800 with Adaptive Controls[™]

Factory-installed options: integrated pump & sound-reduction packages

Features and Benefits

- Ease support of electrification of heat
- Ease of installation
- Simplified service

Operating Limitations		
Chilled Water	40 to 65F	0 to 125F Ambient
Hot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient – 100F at 0F		
Sales Sheet (AC-SLB005-EN) Catalog (AC-PRC002*-EN) IOM (AC-SVX002*-EN)		

System Choices

Air to Water Heat Pump Cooling and Heating System

Air-to-Water Heat Pumps

Four-Pipe Distribution

Flexible Cooling and Heating

Four Pipe Production, Simultaneous Heating and Cooling

System Choices

Storage Source Heat Pump Cooling and Heating System

Key Ideas Regarding System Operation

- Outdoor air is the primary source of building cooling and heating using the ACX AWHP.
- Calmac Thermal Storage Batteries are an alternative source of cooling and heating when conditions favor or require it.
- ACX is able to "cool charge" (freeze water) or "heat charge" (melt ice) the Calmac Thermal Batteries when conditions are favorable.
- Calmac thermal batteries will directly cool the building (melt ice) to shift the electrical load and limit electrical demand in cooling season or to store building heat during heating season.
- RTWD units will be used for thermal battery source building heating (freezing water) during cold outdoor conditions (below 0F).
- Key benefits are:
 - Cold ambient electrified heating
 - Hot water supply (130F) when cold
 - Time independent heat recovery
 - AWHP downsizing
 - Enables demand management

Solving Decarbonization Challenges with Thermal Batteries Cooling with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Heating with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Cooling with Thermal Batteries

Solving Decarbonization Challenges with Thermal Batteries Storage Source Heating - Thermal Batteries & Chiller-Heater

Chiller Heater Systems are Airside Flexible

- Applied to all airside systems
 - Multiple zone VAV systems
 - Fan coil systems
 - Central air handling systems
 - Single zone VAV systems
 - Sensible cooling systems
 - Any combination
- Benefits of this flexibility
 - Air economizer
 - Downsize capacity with whole building diversity
 - One integrated backup heating system
 - DOAS can heat 0F to 60F air directly

Summary

- Heat pumps move heat, they don't create heat
- Heat pumps can successfully meet comfort applications
- Required hot water temperature is determine by the load and the available heat exchangers
- Reduced carbon emissions will increasingly influence our thinking and decision making
- Trane has a growing heating products and system offering
- Hydronic heat pump systems offer airside system flexibility

Thank You!

Any Questions?

N

Appendix

Air-Cooled/Air-Source Units

ASCEND® air-to-water heat pump model ACX

Capacity Range: 140 to 230 tons cooling, 1500 to 2500 MBh heating Refrigerant: R-410A

Compressor design: scroll

Controls: Symbio[®] 800 with Adaptive Controls[™]

Factory-installed options: integrated pump & sound-reduction packages

Features and Benefits

- Ease support of electrification of heat
- Ease of installation
- Simplified service

Operating Limitations		
Chilled Water	40 to 65F	0 to 125F Ambient
Hot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient – 100F at 0F		
Sales Sheet (AC-SLB005-EN) Catalog (AC-PRC002*-EN) IOM (AC-SVX002*-EN)		

Thermafit[™] AXM modular air-to-water heat pump

Capacity range: 30 tons cooling, 390 MBh heating Max of 10 modules per bank **Refrigerant:** R-410A **Compressor design:** vapor injection scroll Factory-installed options: coated coils, compressor wraps, BMS integration, single frame / beam assembly

Features and Benefits

- True redundancy ٠
- Simplified service •
- Easy expandability ٠
- Extreme flexibility
- Small footprint/easy access •

Operating Limitations		
Chilled Water	40 to 65F	0 to 125F Ambient
Hot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient – 130F at 0F		
Available literature Catalog (ARCTC-PRC001*-EN) IOM (ARTC-SVX001*-EN)		

Water-Cooled / Water-Source Units

All Chillers

CTV/ECTV RTWD/RTHD MWC

WXM

MWS

Thermafit[™] WXM Modular Water-Source Heat Pump

Capacity range: 15 to 80 tons cooling, 270 to 1120 MBh Max of 10 modules per bank Refrigerant: R-410A, 134a Compressor design: scroll

Factory-installed options: low sound and pump/tank package

Features and Benefits

- Easy expandability
- Extreme flexibility
- Simplified service
- Small footprint/easy access

Operating Limitations		
Chilled Water	38 to 65F	
Hot Water	60 to 175F	
42 F minimum LWT and 140 F maximum LWT		
Available literature Catalog (ARCTC-PRC002*-EN) IOM (ARTC-SVX002*-EN)		

Thermafit[™] MWS Modular Multipipe water-cooled unit Simultaneous Heating and Cooling

Capacity range: 30 to 60 tons cooling, 1275 to 2690 MBh

Min of 3, max of 8 modules per bank

Refrigerant: R-410A

Compressor design: fixed scroll

Factory-installed options: single-point power, low sound panel package

Features and Benefits

- Single system to meet varying heating and cooling demands
- Fluids from different loops do not mix
- Geothermal support

Operating Limitations				
Cooling only	Chilled water 54-44F	Source 85-95F		
Heating only	Hot water 100-120F	Source 54-44F		
Simultaneous	Chilled water 54-44F	Hot water 100-120F		
Available literature Catalog (ARCTC-PRC003*-EN) IOM (ARTC-SVX005*-EN)				

Common Concerns when Decarbonizing Heat with Electricity

Common Concerns	The Storage Source Heat Pump (SSHP) System Solution
Heating load peaks occur when green power generation is at its lowest.	Thermal batteries can be charged when low carbon energy is available.
Building cooling and heating load peaks occur at different times limiting instantaneous heat recovery effectiveness.	Storage of cooling load energy for use during heating.
In cold climates the outdoor air can get cold enough that Air-Water Heat Pumps cannot run requiring high electrical demand or fossil full backup.	Thermal battery energy is used to carry the building through periods of extreme cold weather with efficient heat pumps.
Emerging electrified heating electricity demand strains electric grid	Thermal energy storage enables building electric demand management
Rapid discharge and charge cycles impact the life of expensive electric battery technologies.	SSHP uses low-cost water to store energy which has infinite freeze / thaw cycles.

